This study introduces a novel multimodal corpus for expressive task-based spoken language and dialogue, focused on language use under frustration and surprise, elicited from three tasks motivated by prior research and collected in an IRB-approved experiment. The resource is unique both because these are understudied affect states for emotion modeling in language, and also because it provides both individual and dyadic multimodally grounded language. The study includes a detailed analysis of annotations and performance results for multimodal emotion inference in language use.
Related Posts
-
Why Dial Testing Alone Isn’t Enough in Media Testing — How to Build on It for Better Results
Consumer Insights
-
The Power of Emotional Engagement: Entertainment Content Testing with Affectiva’s Facial Expression Analysis
Consumer Insights
-
Tracking Emotional Engagement in Audience Measurement is Critical for Industry Success
Consumer Insights
-
How Real-Time Audience Intelligence Is Revolutionizing Modern Advertising
Consumer Insights